Skip to main content

Guo fu Hu Lab

The Hu lab studies angiogenesis in cancers and in neurodegenerative diseases.

Overview

Our primary interest is the mechanism of action of angiogenin (ANG), a 14kDa angiogenicribonuclease. ANG is up-regulated in various human cancers and is mutated iin some amyotrophic lateral sclerosis (ALS) patients. A unique feature of ANG, which distinguishes it from the other angiogenic factors, is that it not only triggers signal transduction in endothelial cell, but is also translocated to the nucleus to directly stimulate ribosomal RNA (rRNA) transcription. rRNA are essential components of ribosomes that are crucial for cell growth, maintenance, and survival. Thus, ANG-mediated rRNA transcription is essential for other angiogenic factors to stimulate angiogenesis.

ANG has three types of target cells (endothelial cells, cancer cells, and motor neurons). These cells respond to ANG but exhibit some difference probably due to the difference in ANG receptor expression. Endothelial cells are the first type of responsive cells that have been used extensively for studying ANG biology. The activity of ANG in endothelial cells is strictly dependent on the cell density in vitro and proliferating status in vivo. ANG receptor is expressed only in sparsely cultured endothelial cells, and in sprouting neovessels in vivo.

Cancer cells are the second type of ANG responsive cells. ANG undergoes nuclear translocation in cancer cells in a cell density-independent manner because of the constitutive expression of its receptor. Constitutive nuclear translocation of ANG in cancer cells is a driving force for cancer progression. Motor neurons are the third type of ANG responsive cells. ANG is strongly expressed in the spinal cord both during development and in the adulthood. Loss-of-function mutations in the coding region of ANG have been found in ALS patients and ANG has been shown to control motor neuron survival.

Besides a role in rRNA transcription, ANG also mediates the production of tiRNA, a novel small class of RNA that is derived from tRNA and is induced by stresses. tiRNA reprogram protein translation under stresses to save anabolic energy, enhance damage repairs, and promotes cell survival. Our research focus is to elucidate the modes of action of ANG in cell growth and survival for the ultimate goal to develop ANG-based therapeutics for cancers and for neurodegenerative diseases.

Principal investigator + Staff
  • Guo-fu Hu, PhD
  • Shuping Li, Instructor, Medicine
  • Nil Vanli, PhD Student in Biochemistry
Publications

View all publications via PubMed

Li S, Yu W, Hu GF. 2012. Angiogenin inhibits nuclear translocation of apoptosis inducing factor in a Bcl-2-dependent manner. J Cell Physiol. 227: 1639-1644. Abstract

Li S, Hu GF.  2011. Emerging role of angiogenin in stress response and cell survival under adverse conditions. J Cell Physiol. Epub ahead of print. Abstract

Hu MG, Deshpande A, Schlichting N, Hinds EA, Mao C, Dose M, Hu GF, Van Etten RA, Gounari F, Hinds PW. 2011. CDK6 kinase activity is required for thymocyte development. Blood. 117: 3120-6031. Abstract

Yamamoto D, Shima K, Matsuo K, Nishioka T, Chen CY, Hu GF, Sasaki A, Tsuji T. 2010. Ornithine decarboxylase antizyme induces hypomethylation of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2) in human oral cancer cell line. PLoS One. 5: e12554. Abstract

Li S, Hu GF. 2010. Angiogenin-mediated rRNA transcription in cancer and neurodegeneration. Int J Biochem Mol Biol. 1: 26-35. Abstract

Chen L, Hu GF. 2010. Angiogenin-mediated ribosomal RNA transcription as a molecular target for treatment of head and neck squamous cell carcinoma. Oral Oncol. 46: 648-653. Abstract

Li S, Yu W, Kishikawa H, Hu GF. 2010. Angiogenin prevents serum withdrawal-induced apoptosis of P19 embryonal carcinoma cells. FEBS J. 277: 3575-3587. Abstract

Emara MM, Ivanov P, Hickman T, Dawra N, Tisdale S, Kedersha N, Hu GF, Anderson P. 2010. Angiogenin-induced tiRNA promote stress-induced stress granule assembly. J Biol Chem. 285: 10959-10968. Abstract

Tsuji T, Ibaragi S, Hu GF. Epithelial-mesenchymal transition and cell cooperativity in metastasis. 2009. Cancer Res. 69: 7135-7139. Abstract

Monti DM, Yu W, Pizzo E, Shima K, Hu MG, Di Malta C, Piccoli R, D’Alessio G, Hu GF. 2009. Characterization of the angiogenic activity of zebrafish ribonucleases. FEBS J. 276: 4077-4090. Abstract

Zhou J, Huang W, Tao R, Ibaragi S, Tdo Y, Wu X, Alekseyev YO, Hu GF, Luo Z. 2009. Inactivation of AMPK alters gene expression and promotes growth of prostate cancer cells. Oncogene 28: 1993-2002. Abstract

Yamasaki S, Ivanov P, Hu GF, Anderson P. 2009. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol. 185: 35-42. Abstract

Ibaragi S, Yoshioka N, Li S, Hu MG, Kishikawa S, Hu GF. 2009. Neamine inhibits prostate cancer growth by suppressing angiogenin-mediated ribosomal RNA transcription. Clin Cancer Res. 15:1981-1988. Abstract

Ibaragi S, Yoshioka N, Kishikawa H, Hu JK, Sadow PM, Li M, Hu GF. Angiogenin-stimulated Ribosomal RNA Transcription Is Essential for Initiation and Survival of AKT-induced Prostate Intraepithelial Neoplasia. Mol Cancer Res. 7: 415-424. Abstract

Hu M, Deshpande A, Enos M, Mao D, Hinds E, Hu GF, Chang R, Guo Z, Dose M, Mao C, Gounari F, Tsichlis PN, Hinds PW. 2008. A requirement for CDK6 in thymocyte development and tumorigenesis. Cancer Res 2009; 69:810-818. Abstract

Tsuji T, Ibaragi S, Shima K, Katsurano M, Sasaki A, Hu GF. Epithelial-mesenchymal transition induced by p12CDK2-AP1 promotes invasion but suppresses metastasis. Cancer Res. 68: 10377-10386. Abstract

Guo J, Zhu T, Ibaragi S, Luo L-Y, Hu GF, Huppi, PS, Chen CY. 2008. Nicotine promotes mammary tumor migration via a signaling cascade involving PKC and cdc42. Caner Res. 68:8473-8481. Abstract

Kishikawa H, Wu D, Hu GF. 2008. Targeting angiogenin in therapy of amyotrophic lateral sclerosis. Expert Opinion Therapeutic Target  12: 1229-1242. Abstract

Wang H, Leav I, Ibaragi S, Wegner M, Hu GF, Lu ML, Balk SO, Yuan X. 2008. SOX9 is expressed in human fetal prostate epithelium and enhances prostate cancer invasion. Cancer Res. 68: 1625-30. Abstract

Jump back to top